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Abstract--The heat transfer through a shallow, horizontal, circular fluid layer, heated uniformly from 
below and cooled uniformly from above, has been measured. The lid of the silicone oil layer was a 
sapphire crystal which permitted visual observation of the flow during the heat-transfer measurements. 
A pattern of circular concentric roils formed at the critical Rayleigh number. This pattern persisted to 
about 6 Re, to be replaced by an irregular pattern at high R and an unsteady irregular pattern at very 
high Rayleigh number. The heat flux measurements confirmed a theoretical prediction of Schlfiter, Lortz 
and Busse concerning the initial slope of the heat-transfer curve afte) onset of convection. The measure- 
ments seem also to confirm recent numerical studies of Plows regarding the amount of heat transferred 
by convection at moderately high supercritical Rayleigh numbers. At high supercritical Rayleigh numbers 
the measurements did not reproduce any of the slope changes in the heat-transfer curve which have been 

observed by other investigators. 

N O M E N C L A T U R E  

c~, volume expansion coefficient [°C 1]; 
~c, thermal diffusivity [cm 2 s 1] ; 
2, wavelength [non-dimensional] ; 
v, kinematic viscosity [cm 2 s 1]; 
p, density [gcm- 3] ; 
a, Prandtl number; 
d, fluid depth; 
g, gravitational constant [cm s- 2]; 
n, number of rings; 
Nu, Nusselt number; 
R, Rayleigh number; 
Re, critical Rayleigh number; 
AT, temperature difference across fluid. 

1. I N T R O D U C T I O N  

SINCE the classical study of B6nard [1] of the motions 
of a shallow fluid layer heated uniformly from below, 
the heat transfer through a convecting horizontal fluid 
layer has been measured repeatedly. The most notable 
modern study of heat transfer by B6nard convection 
is probably Silveston's [2] investigation. Using a tech- 
nique introduced by Schmidt and Milverton [3], 
Silveston determined the critical Rayleigh number R~ 
as well as a heat-transfer curve ranging from subcritical 
Rayleigh numbers R ~ 400 to highly supercritical 
Rayleigh numbers R ~ 106. In the timespan since 
Silveston's work, B6nard convection has been studied 
intensively, both experimentally and theoretically. A 
survey of the present knowledge of B6nard convection 
can be found in [4]. The modern theoretical and experi- 

mental investigation make it necessary to refine 
Silveston's measurements. The experiments described 
in the following are concerned with three aspects of 
the heat transfer by convection, namely (a) the depend- 
ence of the heat flux on the pattern of the flow, (b) the 
correlation of the heat flux with the wavelength of the 
convective motions and, (c) the existence of slope 
changes in the heat-transfer curve for highly super- 
critical Rayleigh numbers. 

The theory of finite amplitude convection of Schliiter, 
Lortz and Busse [5] presents formulas for the initial 
slope of the convective heat transport by rolls as well 
as by square cells and hexagons. The formulas of 
Schtilter, Lortz and Busse refer to convective flow 
under a rigid lid; surface tension is therefore eliminated. 
Note, that the hexagonal pattern which appeared in 
B6nard's and several subsequent experiments were 
caused by surface tension effects, as was shown experi- 
mentally by Block [6] and explained theoretically by 
Pearson [7] and in particular by Nield [8]. Convective 
motions on a plane of infinite horizontal extent with 
rigid-rigid boundary conditions should appear in 
form of straight, parallel rolls, as has likewise been 
shown by Schli~ter, Lortz and Busse [5]. In bounded 
containers the form of the convective motion is deter- 
mined by the shape of the lateral walls, as was shown 
experimentally by Koschmieder [9]. In particular, a 
circular lateral wall causes a pattern of circular con- 
centric rolls. An extensive theoretical study of the con- 
vective motions in a circular cylindrical fluid layer has 
been made by Charlson and Sani [10]. There is a 
number of measurements of the initial slope of the 
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heat transfer in the literature, but none of these 
measurements has been made with a defined uniform 
flow pattern. Measurements of the initial slope of the 
convective heat transfer by a perfect pattern of circular 
concentric rolls will be described later in this paper. 

There is a number of numerical investigations of the 
heat transfer by convection at moderately high Ray- 
leigh numbers. The early studies have been summarized 
by Schneck and Veronis [11]. They note that the com- 
putations predict heat fluxes which exceed the 
measured heat fluxes by about 5 per cent, which seems 
to be outside of the error margin of the measurements. 
Recent computations by Lipps and Somerville [12] and 
Plows [13] show that the discrepancy between the 
computed heat transfer and the measured heat transfer 
vanishes if the wavelength, i.e. the size of the rolls, of 
the convective motions is increased with increasing 
Rayleigh number. Evidence for an increase of the wave- 
length comes from several experiments, for detail see 
[4]. Simultaneous measurements of the'heat transfer 
and the wavelength of convective motions will be 
presented later in this paper. 

There is a number of experimental investigations 
which indicate the existence of slope changes in th~ 
heat-transfer curve at higher Rayleigh number. There 
is, of course, the first "break" of the heat-transfer curve 
at the onset of convection, when molecular conduction 
is supplemented by convection. The first observation 
of a second break at a higher Rayleigh number has 
been made by Schmidt and Saunders [14]. They ob- 
served a transition to "turbulence" at R -~ 45 000 with 
a corresponding change in the heat transfer. Since their 
apparatus was not very sophisticated this observation 
is probably not significant. In time-dependent experi- 
ments Malkus [15] observed seven slope changes at 
R = 1700_+80, 18000_+1000, 55000-+4000, 170000-+ 
15 000, 425 000 -+ 20 000, 860 000_+ 30 000, and 1700 000. 
It appears that his data could as well be fitted by 
smooth curves, within the error interval of his measure- 
ments. The second slope change, for example, appeared 
only on three out of eight measurements at R = 18 000, 
while the others appeared at either 11 000_+2000 or 
26000_+5000. In a subsequent paper Malkus [16] 
presented a theoretical explanation of his measure- 
ments. Each slope change is attributed to the appear- 
ance of a higher mode with wavelengths in the order 
of 1/2, 1/3, 1/4 etc. of the original wavelength. The 
Rayleigh numbers of the slope changes observed by 
him agree within 10 per cent with the Rayleigh numbers 
which follow from his theory for the appearance of 
the higher modes. It must be noted though that his 
theory is based on the existence of a mean linear 
temperature gradient in the fluid layer. It is, however, 
known from measurements of Somerscales and Drop- 
kin [17], interferometric measurements of Gille [18] 

and computations of Plows [13] that the horizontally 
averaged temperature distribution in a supercritical 
convecting fluid layer is curved, with strong thermal 
boundary layers on top and bottom. It must also be 
considered that supercritical convective motions 
activate definitely longer wavelengths as mentioned 
above, instead of the shorter wavelengths which 
Malkus' theory studies. 

A time-dependent investigation of Willis and 
Deardorff [19] confirmed, but renumbered, the ob- 
servations of Malkus with fluids of different Prandtl 
number. They find slope changes at R -- 1750, 8200, 
24000, 56000, 180000, 410000, 830000, 1.4.106 and 
2 .25 .  ]06 . Again the evidence for the slope changes is 
marginal, which is particularly true for the four slope 
changes with the highest Rayleigh numbers. They 
appear to be on one smooth curve, see Fig. 4 of Willis 
and Deardorff. This curve presents the results of just 
one experiment. Note also that the choice of N u  × R as 
ordinate stretches the ordinate and reduces the curva- 
ture of the heat-transfer curve, which then might appear 
to be composed of a couple of straight sections. 

There are other indications for the existence of slope 
~hanges. For example Silveston's [2] heat-transfer 
curve has a break near R = 3 × 105 . However, the 
scatter of the data (+ 15 per cent) at this Rayleigh num- 
ber makes it possible to draw as well a smooth curve 
through his measurements. No break in the heat- 
transfer curve appears in his measurements for Rayleigh 
numbers R < 3 × 105. Di Frederico and Foraboschi 
[20] measured the heat transfer through a water layer 
cooled by evaporation. They observed a slope change 
at R = (2.2_+0.4) × 104. In time-independent experi- 
ments Krishnamurti [21, 22] found slope changes at 
R = 20 300, R = 59 000 and R = 179 000. However, the 
straight lines which are drawn through her data seem 
to be arbitrary. The second and fourth break observed 
by her can obviously be eliminated by smooth curves 
which fit the data actually better or are at least within 
the error margin of the measurements. Ahlers [23] 
made measurements of the convective heat transfer 
in helium layers at temperatures between 2 and 5~K. 
He found, up to 150 R~, only one observable singularity 
in the heat-transfer curve, namely the one at Re. 

Numerical investigations of Deardorff [24] and 
Plows [25] of the heat transfer by convection with 
Rayleigh numbers up to about 22 000 do not indicate 
the existence of slope changes. These calculations are 
based on flow in two-dimensional rolls with cross 
sections independent of Rayleigh number. The later 
computations of Plows [13] study the heat transfer by 
rolls with variable cross sections. They do not indicate 
slope changes either. Note, however, that Lipps and 
Somerville [12] could obtain realistic values of the 
wavelength only with three-dimensional convective 
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flow, as distinct from the above mentioned studies 
which investigate two-dimensional flow. Summarizing 
we note that the evidence for the slope changes in the 
heat-transfer curve is uncertain and contradictory. New 
measurements of the convective heat transfer at higher 
Rayleigh numbers are necessary to clear up the dis- 
crepancies. 

2. D E S C R I P T I O N  O F  T H E  A P P A R A T U S  

A schematic section through the apparatus is shown 
in Fig. 1. The bottom of the fluid layer was a 2-in 
thick copperp la te  of 7-in dia. The copper plate was 
heated electrically from below with a Nicrom resistance 
wire in a spiral groove in a brass plate which was 
soldered to the copper block. The entire bottom block 

',I', . . . .  ' ..................-. ,,,',I'~]'~. Brass (heater) !iii:ii!i!i!ii!iiiii Oil 

#y/ /~ ,o,u,at,o0 ~ _ _ ~  Lucite 

FIG. 1. Sect ion th rough  the apparatus.  

was insulated laterally with a press fit styrofoam ring 
2-in thick. The entire thickness of the copper plate was 
machined to within 0"001 in and the top polished to a 
near mirror finish. The fluid was confined laterally by 
a lucite ring, the inner diameter of which was 5"3125 in. 
The upper boundary of the fluid was a colorless mono- 
crystal sapphire plate of 5.25-in dia. and 0.2-in thick- 
ness with a maximal variation in thickness of 0-001 in. 
The sapphire was obtained from Union Carbide Cor- 
poration- Electronics Division. The expensive sap- 
phire served two purposes. First, it was transparent, so 
the fluid motion could be observed visually and the 
wavelength of the convective flow be determined. 
Second, the sapphire provided an upper fluid boundary 
of excellent thermal conductivity. Most theoretical 
studies of convection make the simplifying assumption 
of excellent thermal conductivity in the boundaries. 
According to the manufacturer the thermal conduc- 
tivity of the sapphire is 0"088 cal/cm s~C at 25 C. This 
is nearly a tenth of the thermal conductivity of copper, 
thirty times better than the conductivity of glass and 

993 

about 300 times the thermal conductivity of the silicone 
oils used as fluid in the experiments. The sapphire plate 
was cooled by water from a constant temperature bath, 
circulated at a rate of about 70cm3/s. The flow rate 
was monitored continuously with a Fisher and Porter 
flow meter. A high rate of flow is necessary to maintain 
a near uniform temperature on top of the convecting 
fluid layer. As indicated in Fig. 1 the cooling water is 
forced through a tube onto the center of the sapphire. 
From there the cooling water spreads radially under 
a thick lucite plate, moves upwards along a lucite 
cylinder which carries the sapphire, and finally runs 
over into a circular basin from which it is returned to 
the constant temperature bath. 

The heat flux was determined with the help of a 
thermopile arrangement, measuring the temperature 
difference in the cooling water between the inlet pipe 
and the outlet of the water at the outside of the circular 
lucite plate that forces the water to spread uniformly 
over the sapphire. The thermopile consisted of ten 
copper-constantan thermocouples in series. Ten junc- 
tions were attached to a copper ring surrounding the 
input pipe. The ten alternate junctions were placed 
36' apart in another copper ring at the outside of the 

lucite plate, as indicated in Fig. 1. This arrangement 
will be referred to as the heat sensor. A more detailed 
description can be found in Pallas 1-26]. The tempera- 
ture difference measured with the heat sensor combined 
with the flow rate of the cooling water determines the 
heat flux through the fluid layer. There is practically 
no lateral heat loss from the fluid layer, since the 
lateral wall is made of very poorly conducting lucite and 
over the outer part of the lucite wall the same vertical 
temperature gradient as in the fluid layer is established. 
There is also virtually no possibility that the cooling 
water on its way over the sapphire looses heat up- 
wards, before it has passed the outer copper ring. This 
is so since the thermopile is imbedded in lucite and 
the vertical temperature gradient is near nil, since the 
entire heat sensor is submerged in the cooling water. 
The heat sensor is very sensitive. Even the minute 
amount of heating of the cooling water which resulted 
from the light of a common flashlight could be de- 
tected. Temperature differences of 0.001 'C  between the 
incoming and outgoing water were routinely measured. 
The calibration of the heat sensor was verified with 
measurements in which water of known temperature 
passed through the center pipe, while the outer copper 
ring was submerged in water of a known different 
temperature. The emf from the thermopile was ampli- 
fied and measured with a Keithley Nanovoltmeter. 
The temperature difference across the convecting fluid 
was measured with a thermocouple pair, one junction 
being in the center of the bottom copper plate, the 
other in the constant temperature bath. Both signals 
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were recorded with a Hewlett-Packard dual track 
recorder. The accuracy of the nanovoltmeters was 
checked with a Keithley Nanovolt source. 

The fluid used in the experiments was silicone oil 
Dow Corning 200 fluid, with viscosities ranging from 
0'05 to 2cm2/s. The different viscosities gave access 
to a wide range of Rayleigh numbers without change 
of the fluid depth. The silicone oil has also the advan- 
tage of a very low thermal conductivity, which for the 
resting fluids is around 3"5 x 10-4cal/cms°C. This, 
compared with the thermal conductivity of copper and 
the sapphire satisfies the theoretical requirement of 
excellent conduction in the boundaries. Furthermore, 
the silicone oil has the advantage of a very slow 
variation of the property values with temperature. For 
example, the fastest varying property, the viscosity, has 
a variation 

1 ~v 
-- 1 X 10 -2 / °C .  

v~.T 

Accurate knowledge of the kinematic viscosity v, 
thermal diffusivity ~:, and of the coefficient of volume 
expansion ~ is necessary for the accurate determination 
of the Rayleigh number R and the Nusselt number 
Nu. The Rayleigh number is defined by the equation 

~gATd 3 
n - (1) 

VK 

The Nusselt number is defined as the ratio 

O--_,conv + Qcond Nu = (2) 
Qcond 

The dynamic viscosity of the fluids at various tem- 
peratures has been measured with a Brookfield syn- 
cbroelectric viscometer. Values used for the density p, 
specific heat Cp and the thermal conductivity were based 
on data supplied by Dow Corning. The data for the 
thermal conductivity were verified with this apparatus 
using a stable temperature gradient. Details concerning 
the property values cannot be discussed here, but a 
comprehensive list can be found in the Appendix B of 
Pallas [26]. The fluid motions were made visible by a 
small amount of aluminum powder added to the fluid. 
Black lines in the photographs indicate places of 
vertical motion, bright areas indicate predominantly 
horizontal motion. 

3. EXPERIMENTAL PROCEDURE AND CONTROLS 

The experiments proceeded as follows. Oil was 
poured on the levelled copper plate. The fluid depth 
was 5.08 mm in the majority of the experiments. The 
sapphire was put on the fluid layer such that no air 
was trapped underneath. The power supply for the 
electric heating was set and the cooling water was 
circulated at a constant temperature. The time constant 
d2/~c for thermal diffusion in the liquid layer was 

around 250 s. When the heating was increased in small 
steps it took around 10rain for the signals from the 
vertical temperature difference and the heat sensor to 
stabilize on the recorder. After around three times 
that time interval the signal obtained from the heat 
sensor was taken to represent the steady-state value of 
the heat flux. All measurements subsequently shown 
are steady-state measurements. Afterwards the tem- 
perature difference across the fluid layer was increased 
by another small step. Most experiments were repeated 
three or four times. Only average values of these 
measurements are plotted on the figures. The standard 
deviations of these measurements are usually within the 
1 per cent range. The maximal occurring deviation was 
2'4 per cent. No error bars are shown on the figures since 
the marks indicating the measured points are larger than 
the experimental errors. Also, the uncertainty in the Ray- 
leigh number and the Nusselt number, which is mostly 
due to the uncertainty of the property values of the 
fluid, is larger than the standard deviation of the 
measurements. The uncertainty of the Nusselt number 
is due mostly to the uncertainty of the flow rate of 
the cooling water and the uncertainty of the thermal 
conductivity of the fluid, both are of order of 1 per 
cent. A longer analysis of the cumulative error 
(Pallas [26]) shows the Nusselt number to be inaccurate 
by 4-2 per cent. The Rayleigh number involves several 
property values, namely e(T), p(T), cp(T), ~c(T) and 
v(T). Since the Rayleigh number also incorporates the 
third power of the depth d of the fluid layer, even 
minute errors in d can contribute to the uncertainty 
of R. Total uncertainty in R was determined to be 
_ 6 per cent. 

In the experiments in which the knowledge of the 
wavelength of the convective motions was required the 
wavelength was measured simultaneously with the 
heat flux. The nondimensional wavelength 2 is the 
ratio of the horizontal width of two rolls divided by 
the fluid depth. Since the time constant for viscous 
dissipation d2/v was at most 5s the convective flow 
was always in a steady state when the heat flux was 
steady. The nondimensional wavelength 2 was deter- 
mined either from the number n of the concentric rings 
with the formula 2 = rind, or from actual measurements 
of the width of individual rings. These measurements 
were made on enlarged photographs of the flow pattern. 
In order to avoid errors due to parallax a ruler placed 
diagonally onto the sapphire was photographed with 
the pattern. Although the flow could be observed 
visually through the heat sensor, the heat sensor was 
removed for a few seconds when measurements of the 
wavelength or photographs of the flow were made. 

A number of checks were made to verify proper 
functioning of the apparatus. The most simple check 
is a comparison of the electric heat input with the heat 
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flux through the oil layer as measured with the heat 
sensor. As it turned out, 92 per cent of the heat input 
went through the convecting oil layer plus the lucite 
ring around the oil. The rest of the input heat must 
have been lost through the insulation surrounding the 
bottom plate. A second test of the apparatus was made 
measuring the heat flux with a positive temperature 
gradient. In order to do so the bottom copper plate 
was submerged in circulating water of constant tem- 
perature while the temperature of the water flowing 
through the heat sensor on top of the sapphire was 
gradually increased. The downward heat flux through 
the oil must then be a linear function of the temperature 
difference across the oil and the slope of that line 
must agree with the thermal conductivity of the oil. 
This was found to be the case, measured curves of 
the heat flux in this case can be found in Pallas [26]. 
Finally a check on the thermal conductivity of the 
sapphire was made. In order to do so the sapphire lid 
was replaced by a 1.73-mm thick copper plate. The 
heat flux through the oil in the conduction and con- 
vection range as measured with the copper plate on 
top of the oil was then compared with the heat flux 
measured while the sapphire was used for the lid. Both 
were found to agree perfectly, see Fig. 8. Note that 
with the copper plate the correction which has to be 
made in AT for the temperature drop across the copper 
plate is nil. Note also that the maximal correction in 
AT which had to be made for using the sapphire was 
2 per cent of AT. 

4. CONV~:CTIV~: FLOW 

The well-known hexagonal flow pattern developed 
on the copper bottom plate when the fluid was heated 
sufficiently from below and cooled by ambient air. An 
example of such motions is shown in Fig. 2. More 
regular patterns have been observed by Koschmieder 
[27] under thin, carefully cooled air layers. When the 
oil was in touch with the sapphire the fluid motions 
commenced at subcritical Rayleigh numbers as circular 
rolls along the wall, see Fig. 3(a). In these and the 
following pictures the outermost roll is almost com- 
pletely hidden underneath the lucite cylinder which 
carries the sapphire. The subcritical rolls, which are 
caused by the presence of the lateral wall, can be 
maintained indefinitely if the temperature difference is 
maintained. Increasing AT caused more rolls to form, 
see Fig. 3(b). At Rc the entire plate was covered by 
thirteen concentric rings, see Fig. 3(c). When the 
vertical temperature difference AT was increased 
further to supercritical values the innermost ring began 
to shrink and disappeared when the temperature was 
raised sufficiently, This process continued with the con- 
secutivc disappearance of rings, see Fig. 3(d f). At 
even higher Rayleigh numbers the axisymmetry of the 

a convecting fluid layer 995 

Fro. 2. Bdnard cells under an air surface. 

FIG. 3. Development of concentric rolls under the sapphire 
lid and increase of wavelength with supercritical Rayleigh 
number. (a) Three rolls adjacent to circular wall. R = 0.85 R~. 
(b) Eleven concentric rolls. R = 0"95 Re. (c) Thirteen circular 
rolls, The outermost rim roll is almost completely hidden. 
R = 1.3 Re. (d) Twelve concentric rolls with shrinking center 
roll. R = 2-2R,,. (e) Eleven concentric rolls just after the 
disappearance of the twelfth ring. R = 3.4 R~. (f) Ten circular 

concentric rolls. R = 6Re. 
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FIG. 4. Irregular laminar supercritical pattern 
under the sapphire lid. R = 8Re. 

flow broke up and cells formed. First a semblance of 
a circular arrangement was conserved, see Fig. 4. Then, 
with further increases in the Rayleigh number the flow 
got gradually irregular and finally time-dependent. 

A referee has raised the question whether the non- 
uniformity of the cooling caused by the presence of the 
lucite ring which carries the sapphire may be the cause 
for the continuing axisymmetry of the flow under super- 
critical conditions. Charlson and Sani [10] have shown 
that the critical energy levels for axisymmetric and non- 
axisymmetric flow states are very close together, which 
suggests that a small nonuniformity in cooling can 
have a large effect on the selection of the cellular 
pattern. Experimental evidence seems to confirm the 
comment of the referee as far as the onset of con- 
vection is concerned. The pattern of circular concentric 
rolls appears only if utmost care is taken in providing 
a cooling of the lid as closely uniform as possible. The 
lucite support ring seems to be of little importance to 
the onset of convection though. A different arrange- 
ment used previously by Koschmieder [9] had a 
uniformly cooled lid which extended beyond the lateral 
rim of the fluid layer, in which case the flow pattern 
was likewise axisymmetric. Concerning now the 
question of the axisymmtery of the flow under super- 
critical conditions, qualitative experimental evidence 
shows that the flow maintains its symmetry longer if 
the cooling is of better uniformity. No evidence in- 
dicated that the lucite support ring influenced the 
supercritical flow. 

Measured wavelengths of the convective motions of 
four experiments with the 50cS oil (0=  511) and 
100cS oil (a = 916) are shown on Fig. 5. The values 
plotted on Fig. 5 were determined from enlarged 
photographs of the flow. The distance from one ring 
to another was measured with a comparator, which 
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FIG. 5. Measured wavelengths as a function of 
Rayleigh number. 

measures distances with an accuracy of 1/100 ram. The 
wavelengths on Fig. 5 are not the arithmetic average 
of the wavelength of all rings. The rim ring was dis- 
carded, since in all cases the width of the rim roll was 
substantially larger than the average roll. This is due 
to insufficient cooling of the rim roll from above. This 
is so, since the sapphire is covered over a large part 
of the rim roll with the lucite ring that carries the 
sapphire. The arithmetic average wavelength of the 
remaining rings and, in particular, the standard devi- 
ation of the average were found to be strongly affected 
by the size of the center ring. The center ring varied 
from very large, just after the disappearance of a ring, 
to very small just before its disappearance. The stan- 
dard deviation of the arithmetic average wavelength 
varied therefore from 5 to 15 per cent, which is un- 
reasonably large in view of the regularity of the pattern 
and the accuracy with which the width of the rings can 
be measured. Therefore the measured width of the rings, 
as well as the squares of the deviation of each ring 
from the average, were weighted with the ratio of the 
area of the ring to the area of the outermost ring. This 
procedure reduces the importance of the center ring. 
The weighted standard deviation ranged then from 
2 to 5 per cent, which is in agreement with the actual 
accuracy of the measurement. The weighted average 
wavelength and the weighted error are shown on Fig. 5. 

The wavelength seems to be a linear function of the 
Rayleigh number between R/I~ = 1 and R/I~ = 6 

within the accuracy of the measurements. The average 
slope, which is indicated by the broken line on Fig. 5, 
is given by the relation. 

- 0"44 + 6 per cent. (3) 
zX(R/R~) 
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Also, the variation of the wavelength is independent 
of the viscosity of the oils, within the accuracy of the 
measurements. Note  that the line connecting the points 
on Fig. 5 intersects the line R/Rc = 1 at around 2 = 1"9, 
while the theoretical critical wavelength is 2,. = 2.016. 
This is due to the fact that an integer number of rings 
has to fit the container. This quantization condition 
permits a variation of the critical wavelength by the 
amount __ A2 = 2/2n. The points shown on Fig. 5 are 
just compatible with the critical theoretical wavelength 
within this error interval. To put this statement in 
another way, the fluid depth was too large to form 
thirteen rings with the proper width to depth ratio. 
Other measurements of the wavelength as a function 
of the Rayleigh number can be found in Silveston [2], 
Krishnamurti [21], and Deardorff, Willis and Somer- 
ville [28]. These measurements show also that the 
wavelength increases with R, but the values of 2 
reported here are longer than those observed by 
[2, 21, 28]. 

o 
o 

2 O 
o 

5. HEAT TRANSFER 

The heat transfer through layers of oil of different 
viscosities or Prandtl number is shown on Figs. 6-10. 
The choice of the viscosity determines the range in 
Rayleigh numbers in which measurements can be made 
if the geometry of the apparatus, i.e. the fluid depth 
is to be preserved. This means that, with fluids of 
low viscosity, measurements cannot be made at sub- 
critical R, since the critical temperature difference AT~ 
is then so small that the heat transfer cannot be 
measured accurately. On the other hand, fluids of 
large viscosity cannot be brought to very high Rayleigh 
numbers since that would require too large temperature 
differences. The heat flux through the 2.00cm2/s = 
200cS oil is shown on Fig. 6. In the conduction range 
with R/R,. < 1, when convective motions are absent, 
the Nusselt number equals one, as it should be. 
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FIG. 7. Heat-transfer curve for 50cS silicone oil. 
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Actually, we expected a gradual increase in the Nusselt 
number to Nu > I as /~ was approached since sub- 
critical motions developed from the rim. However, in 
none of the measurements a systematic increase of the 
Nusselt number was observed before the entire plate 
was covered with rings, that means before Rc was 
reached. Since the existence of the subcritical rings is 
undeniable, they must transport additional heat. How- 
ever, it appears that the subcritical motions are so slow 
that the amount  of heat transferred by them was too 
small to be picked up by the heat sensor within its 
accuracy. Qualitative visual observations of the 
motions of the aluminum tracer particles support this 
contention. The aluminum particles move over finite 
distances only after the critical Rayleigh number is 
exceeded. For values of R > / ~  the heat flux increases 
immediately and rapidly. Figure 6 extends only to 
about 3.5 Pc, the vertical temperature difference across 
the fluid was then about 60°C and was not increased 
further. At 3'5 R,. the flow was still in concentric rings 
of perfect symmetry. The measured critical Rayleigh 
number for the 200 cS oil which follows from the data 
in Fig. 6 is listed in Table 1. The deviations from the 
theoretically expected /~ = 1707 are all within the 
_+ 6 per cent accuracy with which the Rayleigh number 
is known. Table I lists also the corresponding results 
for the 100 and 50cS oils. Figure 7 shows the measured 
heat transfer through the 50 cS oil. This curve extends 
to 15 Re. The flow lost its axisymmetry at around 7 Re. 
Measurements which compare the data obtained with 
the 50 cS oil with data from the 100 and 200 cS fluids 
are shown in Fig. 8. The viscous 100cS and 200cS 
oils are under the thin copper lid instead of the sapphire. 

Table 1 

Fluid Deviation 
viscosity a d ATcr cS (25°C) (cm) (oc) Rcexp from Rc 

theory 

50 511 0-508 6-2 1741 + 2% 
100 916 0"508 13"6 1630 -4% 
200 1673 0.508 24.0 1675 -2% 

Both sets of data agree almost perfectly. The range in 
Rayleigh numbers which can be reached with the 
viscous fluids is now larger, since the fluid depth under 
the copper lid was 8-33 mm. 

Measurements made with the 5, 10 and 50cS oils 
are shown on Fig. 9, together with points taken from 
Silveston [2]. The points marked Silveston do not 
represent actual data from his measurement but rather 
correspond to the curve drawn through a conglom- 
eration of his results obtained with water, heptane and 
silicone oil. Agreement between his curve and our 
measurements seems to be satisfactory. Finally Fig. 10 
shows a plot of the measurements made with all oils 

and S. G. PALLAS 

in the convection range from R~ to 150 Rc. This curve 
is compared with Silveston's curve and the results of 
Plows' [13] computations on Fig. 11. It seems to be 
obvious that the break in Silveston's curve at around 
20/~ is not substantiated. Note that the scatter of 
Silveston's data at that point amounts to about 30 per 
cent of the Nusselt number. Otherwise the results agree 

5 

4 Plows ~. 

2 ~ - -  o l O t S  
• 5 0 c S  
o 1 0 0 c S  
• 2 0 0 c  S 

2 3 4 5 I0 20  30  50 

R/fP, 

FIG. 1 ]. Comparison of the numerical results of Plows and 
the measurements of Silveston with the results of the present 

experiments. 

quite well. There is also good qualitative agreement 
with the results of Plows, taken from his tables IV-9 
and IV-10 for fluids with a = 200. Plows does, however, 
predict a heat flux slightly larger than measured here. 
This difference will probably vanish if the increase of 
the wavelength 2 which Plows considers is increased 
further to match the increase of 2 observed in our 
experiments. 

6. THE INITIAL SLOPE,  THE W A V E L E N G T H  HEAT- 

TRANSFER C O R R E L A T I O N  AND THE S L O P E  C H A N G E S  

From the data presented in Figs. 6-10 the wanted 
information concerning the initial slope of the convec- 
tive part of the heat-transfer curve can be obtained. 
The formula which SchliJter, Lortz and Busse [5] give 
for the initial slope of the heat flux after onset of 
convection in the form of rolls is 

FI R ( N u -  1) 1 

R -  Rc - R -  Rc - 0"699- 0"0047/a' (4) 

neglecting higher order terms in the Prandtl number o-. 
Since the Prandtl number of the fluids used for the 
slope determination is larger than 500, the initial slope 
should be independent of a in these measurements. 
Thus the slope to be expected is 

R(Nu - 1) 
- 1"43. (5)  

R - Re 

It follows from analogous formulas that the slope 
for square cells should be 1.28 and for hexagons be 1.12. 
Using R x Nu as ordinate and R/Rc as abscissa we 
obtain Fig. 12. The numerator of equation (4) is equal 
to the distance between the full line and the dashed 
line which indicates the location of R x Nu when 
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FIG. 12. Determination of the initial slope of the 
heat-transfer curve. 

Nu = 1. Dividing for example at R/R,. = 2 the difference 
R x N u -  R by R -  R~ gives a value for the initial slope 
of 1.48 which is, within the error of measurement, in 
agreement with the theoretical prediction, The slope 
is also independent of or, within the range of Prandtl 
numbers used. The value for the slope is clearly 
distinct from the slope to be expected for hexagons or 
square cells. This seems to be the first time that 
formula (4) has been verified experimentally. Note, 
however, that the theory concerns straight parallel rolls, 
while the heat flux measured here is caused by circular, 
concentric rolls. 

The measured dependence of the heat transfer on the 
wavelength of the convective motions is shown on 
Fig. 13. The abscissa is the measured wavelength of 
the 50, 100 and 200cS oils. The curve Nu(2) implies 
that the Nusselt number is very sensitive to small 
changes in the wavelength immediately after the onset 
of convection. On the other hand, the curve seems to 
indicate that the Nusselt number approaches independ- 
ence of the wavelength as the wavelength becomes 
very large. Comparison of the measured data with 
information from numerical studies of Lipps and 
Somerville [12] and Plows [13] is made in Table 2. 
Plows computed the Nusselt number for a given fixed 
2 for several Rayleigh numbers. The values of Plows 
quoted in Table 2 were chosen such that they corre- 
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FIG. 13. The heat flux as a function of the 
wavelength and the Rayleigh number. 

spond to the minimum Rayleigh number used by Plows 
for a wavelength given by us. Plows' results can be 
probably brought into better agreement with our 
measurements if the wavelength in his computations 
is increased further. 

Finally the question of the slope changes at higher 
Rayleigh number. The data for the supercritical heat 
flux are plotted on Fig. 14(a-c), using as ordinate the 
nondimensional heat flux Nu x R, as is customary in 
investigations which study the slope changes. The entire 
range from R~ to 170Re has been broken up into three 
sections, so that each section overlaps a region in which 
a slope change is expected. Figure 14(a) covers the 
region around R = 8200 ~ 4"8 Rc, where the first slope 
change was observed by Willis and Deardorff [18]. 
Within the accuracy of our measurements we cannot 
find a slope change, for three different oils and the 
100cS fluid also under the copper lid. The range 
between 5R~ and 20Rc shown on Fig. 14(b) should 

Table 2 

Nusselt number 
R/R,. Plows L & S Present 

2.928 2-094 1-95 
3.513 2.219 2.22 2.09 
4.099 2.316 2.15 
5.270 2.474 2.32 
7.027 2.650 2.58 2.5 

Relative deviation 
Wavelength 

Plows L & S Present 

2-1 2.16 
2-2 2.2 2.26 
2.3 2-32 
2.4 2.5 
2.5 2.8 2-72 

Nusselt Wavelength 
(%) ('~I;) 

7 2.8 
6 ,6  2.5 
7.5 1 
6 0.5 

6,1 9 ,3  
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cover the slope change at R = 24000 ~ 14P~ of Willis 
and Deardorff, the slope change at R = 18 000 ~ 10.6 R¢ 
of Malkus [15] and the slope change at 13Re of 
Krishnamurti [21]. Again the data from our measure- 
ments for three different oils seem to be on one smooth, 
gently curved line. Finally the range between 25 P~ and 
170 P~ should show slope changes at around 33 Re and 
I00 P~ according to Malkus, Willis and Deardorff, and 
Krishnamurti. Within the accuracy of our measure- 
ments the heat flux as plotted on Fig. 14(c) seems to be 
a smooth curve as well. 
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FIG. 14. Search for slope changes in the heat-transfer 
curve. Measured points of different sets of experi- 
ments have been shifted from the curve marked 
"original" to avoid crowding of the points. (a) Heat 
flux vs Rayleigh number. R < 8 Re. (b) Heat flux vs 
Rayleigh number. R < 20/~. (c) Heat flux vs Rayleigh 

number. R < 170/~. 

7. CONCLUSIONS 

The measurements of the heat transfer through a 
shallow convecting fluid layer confirm positively the 
value of the initial slope of the convective heat transfer 
of a roll pattern predicted theoretically by Schlfiter, 
Lortz and Busse [5]. The initial slope was found to 
be independent of the Prandtl number for the high 
Prandtl number fluids used, in agreement with theory. 
The critical Rayleigh number measured was found to 
agree with the theoretically predicted, within a ± 6 per 
cent error of the Rayleigh number. The limiting factor 
in the accuracy of the Rayleigh number is the accuracy 
with which the fluid properties are known. The 
measurements of the heat transfer up to around 20/~ 
seem to be in reasonable agreement with the heat 
transfer predicted numerically by Lipps and Somerville 
[12] and by Plows [13]. If these studies had used 
longer wavelengths than they actually have, then the 
computed and our measured heat transfer would 
probably have matched. Within the range of Prandtl  
numbers used, no dependence of the heat transfer on 
the Prandtl number was apparent in the measuremefits. 
This agrees with the results of Plows [13] studies, 
which indicate a dependence of the heat transfer on 
only for Prandtl numbers smaller than 10, while the 
minimal a used in our measurements was 50. The search 
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for s lope changes  in the heat- t ransfer  curve at high 
supercri t ical  Rayleigh number s  was in vain. Wi th in  the 
accuracy of  our  measu remen t s  the heat  t ransfer  curve 
for supercri t ical  Rayleigh number s  seems to be a 
s m o o t h  curve wi thout  s lope changes  up to 170R~. 
This does,  of  course,  no t  exclude the  existence of  any 
slope change  at all. But it indicates  that  the slope 

changes  observed  by o ther  invest igators  may or iginate  
f rom t ime-dependen t  opera t ion  of  the appa ra tus  or as 

seems more  likely, f rom the scat ter  of  the da ta  which 

permi ts  to d raw linear sect ions of the heat- t ransfer  

curve. Fu r the r  search for s lope changes  would  be 
justified if solid theoret ical  evidence indicates  the 
existence of such s lope changes.  However ,  the theor-  
etical under s t and ing  of  supercri t ical  B6nard convect ion  
extends  at p resent  at most  to Rayleigh number s  a few 

t imes critical. 
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TRANSFERT THERMIQUE A TRAVERS UNE MINCE COUCHE HORIZONTALE 
DE FLUIDE 

R~sum~ On mcsure le transfert thermique a travcrs unc couche de fluide mince, horizontalc, circulaire, 
chauff+e fi la base et refroidic uniform6ment sur le dessus. Lc couvcrclc au dessus de la touche d'huile de 
silicone est un cristal de saphir qui permet dcs visualisations durant les mcsures. Une configuration de 
rouleaux circulaires concentriques se forme au nombrc de Raylcigh critique. Ccttc figure persistc jusqtf',). 
6Re environ, pour 6trc remplacee aux nombrcs R 61evds par une conliguration irrdguliizre et ensuite par 
une autre instablc et irrdguli~re, aux tr6s grands nombrcs de Rayleigh. Les mesurcs confirment les 
predictions de Schltitcr, Cortz et Busse concernant la pente initiale dc la courbe de transfer! thcrmiquc 
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apr~s l'6tablissement de la convection. Les mesures semblent aussi confirmer les calculs num6riques 
r6cents de Plows sur la quantit6 de chaleur transfSr6e par convection, pour les valeurs mod6r8ment 
supercritiques du nombre de Rayleigh. Aux fortes valeurs supercritiques, les mesures ne reproduisent pas les 

changements de pente de la courbe de transfert thermique, observes par d'autres exp6rimentateurs. 

W,~RMEDURCHGANG DURCH EINE FLACHE, HORIZONTALE, 
W,~RMEt)BERTRAGENDE FLUSSIGKEITSSCHICHT 

Zusammenfassung--Es wurde der W'~irmedurchgang durch eine flache, waagerechte, kreisf6rmige 
Fltissigkeitsschicht gemessen, die von unten gleichmiiBig geheizt und yon oben gleichmfiBig gektihlt wurde. 

Dic obere Abdeckplatte der Silicon61schicht war ein Saphir-Kristall, wodurch eine visuelle Beobachtung 
w~vend der Wiirmeiibertragungsmessungen m6glich war. Bei der kritischen Rayleigh-Zahl bildet 
sich ein Muster yon konzentrischen Wirbelwalzen. Dieses Muster war bis ungef/ihr 6Rakrit bestiindig, 
wandelte sich zu einem unregelmiiBigen Muster bei hohen und zu einem unstetigen und unregelm~if3igen 
Muster bei sehr hohen Werten der Rayleigh-Zahl. 

Die W~irmestrommessungen bestiitigten, was die Anfangssteigung der Wiirmeiibergangskurve nach dem 
Einsetzen der Konvektion anbetrifft, eine theoretische Voraussage yon Schliiter, Lortz und Busse. Die 
Messungen scheinen augerdem die Ergebnisse neuerer numerischcr Studien yon Plows zu bestiitigen, die 
sich auf die bei m~iBig hohen, iiberkritischen Rayleigh-Zahlen iibertragene W~irme beziehen. Bei hohen, 
iiberkritischen Rayleigh-Zahlen erbrachten die Messungen keine der yon anderen Forschern beobachteten 

Steigungs ~inderungen der W~irmeiibergangskurve. 

UEPEHOC TEFUIA HEPE3 TOHKIAITI FOPIA3OHTASIBHBIITI KOHBEKTIABHBII3 
CA101~1 )KHd1KOCTId 

AnHOTaUHH- H3Mep~ca rlepeHoc Tcn.~a ,tepe3 TOHKIdH FOpH3OHTaZIbHBI.~I HHJIHH~pH'-IeCKI4~ CJ1OI~I 
~KH21KOCTH, paBHOMepHo HarpeBaeMhl~ CHH3y H paBHOMepHo oxfla~aeMb~ cBepxy. BepxHe~ rpa- 
HHUCkl CYlO~I ceJ1HKOHOBOFO Macna cny~KHfl can~HpOBbI6 KpHcTaJlfl, HTO FIO3BOdlfldlO BH3yadltt3HpOBaTb 
TeHcHHe npH pacneTe  TeHflOO6MCHa. [JpH KpHTHHeCKOM 4HcIle Peae~ Ha6mo21anacB KOHBeKHI4~I B 
BH)le KpyFOBBIX KoaKcI~aYlBHblX Ba~OB. ~ T a  cTpyKTypa  coxpaHnaacb 21o 6R¢, 3aMeHnJlacb cTpyKTypokI 
reoMeTpHqecK, HerlpaBHflt, HO~ ~OpMbl IJpH 6OIlbtUOM R 11 HeycTo~HBO~ cTpyKTypo~ reoMexptt- 
qeCKH HeHpaBHflBHO~ 0/)OpMbl HpH OHGHb 6OYibldJOM HHcdle Penes. 143MepeHH~l TeHYIOBOFO nOTOKa 
FIOdlTBepZ1HJ1H TeopeTHLIeCKHe pac~leTbl Ha~laYlbHOFO HaKAoIta KpMBOi4 Tendloo6MeHa llOCfle BO3tlHKtlO- 
BeHH~t KOItBeKI~HH, HpOBeJIeHHBle [lldltOTepOM, f lopHeM !4 Bycce. OKa3blBaeTcfl, "-ITO Id3MCpGHI4$t TaK~Ke 
HOJITBep)KJIatOT pe3ydlbTaTbl nedlaBHO HpoBedletlHblX ~IHCYleHHB1X ldCC~Iej1OBaHHH H J l o y 3 a  0 KOHBeK- 
THBIIOM nepeHoce TeflAa B noToKe np~ lie otte/Ib BblCOKHX cBepxKpHTHqeCKHX qHc;~ax Peaea. FIp. 
BBICOKHX cBepXKpHTHqeCKHX ~IHCJIaX Pedle~ H3MepeHHYl He BOCHDOH3BOJl$1T KaKFIX-flI4~O H3MetleHHkl 

HaK~qOHa KpHBOH TeHdlOO6MCHa, KOTOpble tla6fllO/].aYlHCb / lpyFtlMtl  HCcJleJ~OBaTe.rlYlMH, 


